Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors.
نویسندگان
چکیده
The effect of liquid and solid transfer vectors (silicone oil and Desmopan, respectively) on the gaseous interfacial area (a(g)) was evaluated in a two-phase partitioning bioreactor (TPPB) using fresh mineral salt medium and the cultivation broth of a toluene degradation culture (Pseudomonas putida DOT-T1E cultures continuously cultivated with and without silicone oil at low toluene loading rates). Higher values of a(g) were recorded in the presence of both silicone oil and Desmopan compared to the values obtained in the absence of a vector, regardless of the aqueous medium tested (1.6 and 3 times higher, respectively, using fresh mineral salt medium). These improvements in a(g) were well correlated to the oxygen mass transfer enhancements supported by the vectors (1.3 and 2.5 for liquid and solid vectors, respectively, using fresh medium). In this context, oxygen transfer rates of 2.5 g O(2)L(-1)h(-1) and 1.3 g O(2)L(-1)h(-1) were recorded in the presence of Desmopan and silicone oil, respectively, which are in agreement with previously reported values in literature. These results suggest that mass transfer enhancements in TPPBs might correspond to an increase in a(g) rather than to the establishment of a high-performance gas/vector/water transfer pathway.
منابع مشابه
The Effect of pH on the Liquid-liquid Equilibrium for a System Containing Polyethylene Glycol Di-methyl Ether and Tri-potassium Citrate and its Application for Acetaminophen Separation
In this work liquid-liquid equilibrium for aqueous two phase system composed of polyethylene glycol di-methyl ether and tri-potassium citrate at different medium pH values (6.00, 7.00 and 8.00) and 298.15 K was studied. The obtained results show that two phase area expanded with an increasing of pH values. The performances of the Merchuk and semi-empirical equations were tested in correlating t...
متن کاملDetermination of Interfacial Area in Gas-Liquid Two Phase by Light Transmission
The purpose of the present paper is to develop light beam method to measurement of interfacial area in a rectangular gas-liquid bubble column. Total interfacial area can be determined in bubble column filled by transparent liquid by light transmission method. According to pervious researches, the fraction of parallel light is function of interfacial area and optical path l...
متن کاملModel for a solid-liquid airlift two-phase partitioning bioscrubber for the treatment of BTEX
BACKGROUND: Airlift solid–liquid two-phase partitioning bioreactors (SL-TPPBs) have been shown to be effective for the treatment of gas streams containing benzene, toluene, ethylbenzene and o-xylene (BTEX). The airlift SL-TPPB is a low-energy system that utilizes a sequestering phase of solid silicone rubber beads (10%v/v) that will uptake and release large amounts of BTEX in order to maintain ...
متن کاملExperimental Investigation of Phase Inversion of Liquid-Liquid Systems in a Spray Extraction Column
An experimental study of the phase inversion behavior of liquid-liquid dispersion has been conducted in a spray extraction column for systems of toluene / water, n-hexane/water, CCl4/water, toluene /water + glycerol (25 % wt), toluene + CCl4 (25 % wt) / water and toluene / acetic acid (5 % wt)/water. The effects of physical properties, mass transfer and column geometry...
متن کاملComparison of Different Loop Bioreactors Based on Hydrodynamic Characteristics, Mass Transfer, Energy Consumption and Biomass Production from Natural Gas
The performance of a forced-liquid Vertical Tubular Loop Bioreactor (VTLB), a forced-liquid Horizontal Tubular Loop Bioreactor (HTLB) and a gas-induced External Airlift Loop Bioreactor (EALB) were compared for production of biomass from natural gas. Hydrodynamic characteristics and mass transfer coefficients were determined as functions of design parameters, physical properties of gases as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 175 1-3 شماره
صفحات -
تاریخ انتشار 2010